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Abstract: The goal of natural image denoising is to estimate a clean version of a given noisy image, utilizing 

prior knowledge on the statistics of natural images. Noise removal from natural images is a challenging task. 

Image denoising is an applicable issue for image processing and computer vision problems. There are several 

existing methods are available for image denoising. A most applicable and expected property of an image 

denoising is that it should totally remove the noise as well as its preserve edges. This paper represents the 

review of parameter and algorithms available for image denoising. 

Index Terms: Image noise, sparse, over-complete dictionary, Redundancy parameters. 

 

I. Introduction 
A digital image is an array of real or complex numbers represented by a finite number of bits. 

Processing of an image involves improvement in its appearance and efficient representation. It involves 
extraction, analysis and recognition of images and also coding, filtering, enhancement and restoration of the 

image. 

 

Generally Image processing is divided into three major stages. There are  

(i)Discrimination and Representation,  

(ii)Processing,  

(iii)Analysis.  

 

(i) Discrimination and Representation: 
It involves conservation of an image into discrete form and approximating them then save it in stored area. 

(ii) Processing: 
It is for improving the image Quality by filtering method and compressing the data to reduce the storage area. 

(iii) Analysis: 
Analysis involves extracting the image and recognition. 

 

II.         Noise Model 
(a)ADDITIVE WHITE GAUSSIAN NOISE (AWGN): 

Noise is present in image either in Additive or multiplicative form. Here we address the image 

denoising problem, where zero-mean white and homogeneous Gaussian additive noise. Gaussian noise is 

created in a image by the factors such as electronic circuit noise and sensor noise, which are caused by poor 
illumination and high temperature. 

    (1) 

Where y is the observed noise image, x is the original image and n is the AWGN noise.[2] 

 

(b) IMPLUSE NOISE: 

Impulsive noise is common in images which arise at the time of image acquisition  

and or transmission of images. Impulsive noise can be classified into two categories, namely Salt & Pepper 

Noise (SPN) and Random Valued Impulsive Noise (RVIN).[1] 

 

(1)Salt and pepper noise: 
Each pixel in an image has the probability of s/2 (0<s<1) being contaminated by either a white dot 

(salt) or a black dot (pepper).[2] 

 

         (2) 
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(2)Random value impulse noise: 

Each noise pixel in a image take any value within the range minimal to maximum.[2] 

 

                                (3) 

 

Where y is uniformly distributed  

 

(c)PROPERTY: 

It is easily traceable and controllable in both Spatial and Frequency domain.[14] 

  

(1) Spatial domain: 

In spatial domain method, the pixel of images is manipulated directly. Spatial domain process may be expressed 
as, 

 

g(x,y) = T[f(x,y)]                  (4) 

where, 

f(x,y) - input image 

g(x,y) – processed image 

T is an operator on ‗f‘ defined over some neighborhood of (x,y). 

 

(2) Frequency domain: 

Frequency domain based on the modifying the Fourier transforms of an image. (i.e.) It is based on 

convolution theorem. Let g(x,y) be an image formed by the convolution of an image f(x,y) and a linear position 
invariant operator h(x,y). 

g(x,y) = h(x,y) * f(x,y)                (5) 

From convolution theorem, 

G(u,v) = H(u,v) . F(u,v)              (6) 

Output of an image 

g(x,y) = F-1[H(u,v) . F(u,v)]         (7) 
 

 

III.      Dictionary And Sparse Representation 
Dictionary Learning is a topic in the Signal Processing area, the dictionary is usually used for Sparse 

Representation or Approximation of signals. A dictionary is a collection of atoms; here the atoms are real 

column vectors of length . A finite dictionary of atoms can be represented as a matrix  of size . In a 

Sparse Representation a vector  is represented or approximated as a linear combination of some few of the 

dictionary atoms. The approximation  can be written as 

                         (8) 

Where w is a vector containing the coefficients and most of the entries in  are zero. Dictionary Learning is the 

problem of finding a dictionary such that the approximations of many vectors, the training set, are as good as 

possible given a sparseness criterion on the coefficients, i.e. allowing only a small number of non-zero 

coefficients for each approximation. 

 

(i)Sparse approximation 

(a)Noiseless observations: 
Consider a linear system of equations , where  is an underdetermined 

matrix and . , called as the dictionary or the design matrix, is given. The 
problem is to estimate the signal , subject to the constraint that it is sparse. The underlying motivation for 

sparse decomposition problems is that even though the observed values are in high-dimensional space, the 

actual signal is organized in some lower-dimensional subspace . Sparsity implies that only a few 
components of are non-zero and the rest are zero. This implies that can be decomposed as a linear 

combination of only a few vectors in , called atoms.  Itself is over-complete . Such vectors 

are called as the basis of . However, unlike other dimensionality reducing decomposition techniques such as 

Principal Component Analysis, the basis vectors are not required to be orthogonal. 
The sparse decomposition problem is represented as, 



An Overview on Dictionary and Sparse Representation in Image Denoising 

www.iosrjournals.org                                                        67 | Page 

 
Where 

 is a pseudo-norm, , which counts the number of non-zero 

components of . This problem is NP-Hard with a reduction to NP-complete subset 
selection problems in combinatorial optimization. A convex relaxation of the problem can instead be obtained 

by taking the norm instead of the norm, where 

                          (9) 

The norm induces sparsity under certain conditions.[6] 

(b)Noisy observations: 

Often the observations are noisy. By imposing a norm on the data-fitting term and relaxing the equality 
constraint, the sparse decomposition problem is given by, 

λ             (10) 

Where  is a slack variable and  is the sparsity-inducing term. The slack variable balances the trade-off 

between fitting the data perfectly, and employing a sparse solution.[6] 

 

IV.    Algorithms Used For Sparse Representations 
There are several algorithms that have been developed for solving sparse approximation problem. 

(a) Matching pursuit 

Matching pursuit is a greedy iterative algorithm for approximately solving the original  pseudo-norm 

problem. Matching pursuit works by finding a basis vector in  that maximizes the correlation with the 

residual (initialized to ), and then recompiling the residual and coefficients by projecting the residual on all 

atoms in the dictionary using existing coefficients. Matching pursuit suffers from the drawback that an atom can 
be picked multiple times which is addressed in orthogonal matching pursuit.[7] 

 

(b) Orthogonal matching pursuit 

Orthogonal Matching Pursuit is similar to Matching Pursuit, except that an atom once picked, cannot 

be picked again. The algorithm maintains an active set of atoms already picked, and adds a new atom at each 

iteration. The residual is projected on to a linear combination of all atoms in the active set, so that an orthogonal 

updated residual is obtained. Both Matching Pursuit and Orthogonal Matching Pursuit use the norm. [6] 

 

(c) LASSO 

LASSO method solves the norm version of the problem. In LASSO, instead of projecting the residual 

on some atom as in Matching Pursuit, the residual is moved by a small step in the direction of the atom 
iteratively. 

 

(d) Projected Gradient Descent 

Projected Gradient Descent methods operate in a similar fashion with the Gradient Descent: the current 

gradient provides the information to point to new search directions. Since we are looking for a sparse solution, 

the putative solutions are projected onto the sparse scaffold of  vectors. 

 

V.    Total variation denoising 
In signal processing, total variation denoising, also known as ‗total variation regularization‘ is a 

process, most often used in digital image processing, that has applications in noise removal. It is based on the 

principle that signals with excessive and possibly spurious detail have high total variation, that is, the integral of 

the absolute gradient of the signal is high. According to this principle, reducing the total variation of the signal 

subject to it being a close match to the original signal, removes unwanted detail whilst preserving important 

details such as edges.[18] 

This noise removal technique has advantages over simple techniques such as linear smoothing or 

median filtering, which reduce noise but at the same time smooth away edges to a greater or lesser degree. By 

contrast, total variation denoising is remarkably effective at simultaneously preserving edges whilst smoothing 

away noise in flat regions, even at low signal-to-noise ratios.[19]  
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Fig.1 Total variation denoising technique to an image corrupted by Gaussian noise. 

 

 (a)Application 

Total variation can be seen as a non-negative real-valued functional defined on the space of real-valued 

functions (for the case of functions of one variable) or on the space of integrable functions (for the case of 

functions of several variables). As a functional,  total variation finds applications in several branches of 
mathematics and engineering, like optimal control, numerical analysis and calculus of variations, where the 

solution to a certain problem has to minimize its value. 

 

VI.    Dictionary Training: 
Dictionary training is a much more recent approach to dictionary design, and as such, has been strongly 

influenced by the latest advances in sparse representation theory and algorithms. The most recent training 

methods focus on `0 and`1 sparsity measures, which lead to simple formulations and enable the use of recently 

developed efficient sparse-coding techniques. The main advantage of trained dictionaries is that they lead to 

state-of-the-art results in many practical signal processing applications. 
A common setup for the dictionary learning problem starts with access to a training set, a collection of 

training vectors, each of length N. This training set may be finite, and then the training vectors are usually 

collected as columns in a matrix X of size Nell, or it may be infinite. For the finite case the aim of dictionary 

learning is to find both a dictionary, D of size Next, and a corresponding coefficient matrix W of size Kill such 

that the representation error, R=X-DW, is minimized and W fulfill some sparseness criterion. 

 

(a) Method of Optimal Directions 

The Method of Optimal Directions (MOD) was introduced by Eganet al. in 1999 [10], [11], and was 

one of the first methods to implement what is known today as a sparsification process. Given a set of examples 

X = [x1, x2,…. xn], the goal of the MOD is to find a dictionary D and a sparse matrix Ґ which minimize the 

representation error, 
 

 
 

The MOD typically requires only a few iterations to converge, and is overall a very effective method. The 

method suffers, though, from the relatively high complexity of the matrix inversion. Several subsequent works 

have thus focused on reducing this complexity, leading to more efficient methods. 

 

(b)Union of Orthobasis: 

Training a union-of-orthobasis dictionary was proposed in2005 by Lesage et al. [12] as a means of 

designing a dictionary with reduced complexity and which could be more efficiently trained. The process also 

represents one of the first attempt training a structured over-complete dictionary — a tight frame in this case. 

The model suggests training a dictionary which is the concatenation of k orthogonal basis, so D =[D1 D2 . . . Dk] 

with the {Di} unitary matrices. Sparse-coding over this dictionary can be performed efficiently through a Block 

Coordinate Relaxation (BCR) technique [13].A drawback of this approach is that the proposed model itself is 

relatively restrictive, and in practice it does not perform as well as more flexible structures. Interestingly, there 

is a close connection between this structure and the more powerful. Generalized PCA model, described next. As 

the GPCA model deviates from the classical sparse representation paradigm, identifying such relations could 

prove valuable in allowing the merge of the two forces. 
 

(c) Generalized PCA 

Generalized PCA, introduced in 2005 by Vidal, Ma and Sastry [13], offers a different and very 

interesting approach to over complete dictionary design. The GPCA view is basically an extension of the 

original PCA formulation, which approximates a set of examples by a low-dimensional subspace. In the GPCA 

setting, the set of examples is modeled as the union of several low-dimensional subspaces perhaps of unknown 

number and variable dimensionality and the algebraic geometric GPCA algorithm determines these subspaces 

and fits orthogonal bases for them. The GPCA viewpoint differs from the sparsity model described in (2), as 



An Overview on Dictionary and Sparse Representation in Image Denoising 

www.iosrjournals.org                                                        69 | Page 

each example in the GPCA setting is represented using the atoms corresponding to only one of the subspaces; 

thus, atoms from different subspaces cannot jointly represent a signal. This property has the advantage of 

limiting over-expressiveness of the dictionary, which characterizes other over complete dictionaries; on the 
other hand, the dictionary structure may be too restrictive for more complex natural signals. A unique property 

of the GPCA is that as opposed to other training methods, it can detect the number of atoms in the dictionary in 

certain settings. Unfortunately, the algorithm may become very costly this way, especially when the amount and 

dimension of the subspaces increases. Indeed, intriguing models arise by merging the GPCA viewpoint with the 

classical sparse representation viewpoint: for instance, one could easily envision a model generalizing (6) where 

several distinct dictionaries are allowed to co-exists, and every signal is assumed to be sparse over exactly one 

of these dictionaries. 

 

(d) The K-SVD Algorithm 

The desire to efficiently train a generic dictionary for sparse signal representation led Aharon, Elad and 

Bruckstein to develop the K-SVD algorithm in 2005 [15]. The algorithm aims at the same sparsification 
problem as the MOD, and employs a similar block-relaxation approach. The main contribution of the K-SVD is 

that the dictionary update, rather than using a matrix inversion, is performed atom-by-atom in a Simple and 

efficient process. Further acceleration is provided by updating both the current atom and its associated sparse 

coefficients simultaneously. The result is a fast and efficient algorithm which is notably less demanding than the 

MOD. The K-SVD algorithm takes its name from the Singular Value-Decomposition (SVD) process that forms 

the core of the atom update step and which is repeated K times, as the number of atoms. For a given atom k, the 

quadratic term in (6) is rewritten as 

 

||   (11) 

 

Where are the rows of Γ, and Ek is the residual matrix. The atom update is obtained by minimizing for dk and 

via a simple rank-1 approximation of Ek. To avoid introduction of new non-zeros in Γ, the update process is 

performed using only the examples whose current representations use the atom dk. 
 

The K-SVD, as well as the MOD, suffers from a few common weaknesses. The high non-convexity of the 

problem means that the two methods will get caught in local minima or even saddle points. Also, the result of 

the training is a nonstructural dictionary which is relatively costly to apply, and therefore these methods are 

suitable for signals of relatively small size, such as image patches. In turn, in recent years several parametric 

dictionary training methods have begun to appear, and aim to address these issues by importing the strengths of 

analytic dictionaries to the world of example based methods. 

 

VII.    Conclusion 
Dictionary design has significantly evolved over the past decades; beginning with simple orthogonal 

transforms and leading to the complex over-complete analytic and trained dictionaries. Substantial conceptual 

advancement has been made in understanding the elements of an efficient dictionary design. However, with a 

wealth of tools already developed, much work remains to be done; indeed, the various components have yet to 

be neatly merged into a single efficient construct. Many future research directions have been mentioned in the 

text, and demonstrate the viability and vividness of the field as well as the large number of challenges that still 

await. Of specific interest, we highlight the strong need for a multi-scale structured dictionary learning 

paradigm, as well as methods to use such dictionaries in applications, which will clearly be the focus of much 

research in the near future. 
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